Lab on a Chip

Micro- & nano- fluidic research for chemistry, physics, biology, & bioengineering

www.rsc.org/loc

Volume 11 | Number 6 | 21 March 2011 | Pages 981–1176

ISSN 1473-0197

RSCPublishing

EDITORIAL Gaitan and Locascio Art in Science

Lab on a Chip

Micro- & nano- fluidic research for chemistry, physics, biology, & bioengineering

www.rsc.org/loc

RSC Publishing is a not-for-profit publisher and a division of the Royal Society of Chemistry. Any surplus made is used to support charitable activities aimed at advancing the chemical sciences. Full details are available from www.rsc.org

IN THIS ISSUE

ISSN 1473-0197 CODEN LCAHAM 11(6) 981-1176 (2011)

Cover See Gaitan and Locascio, pp. 993–994. Art in Science. Image reproduced by permission of Nicolas Gunn from *Lab Chip*, 2011, **11**, 993.

Inside cover

See Erickson *et al.*, pp. 995–1009. Nanomanipulation using near field photonics. Image reproduced by permission of David Erickson from *Lab Chip*, 2011, **11**, 995.

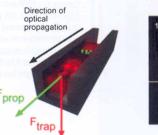
EDITORIAL

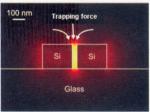
993

Art in Science

Michael Gaitan and Laurie Locascio

Michael Gaitan and Laurie Locascio introduce the 3rd annual µTAS Art in Science award presented in October 2010.


CRITICAL REVIEW


995

Nanomanipulation using near field photonics

David Erickson,* Xavier Serey, Yih-Fan Chen and Sudeep Mandal

In this article we review the use of near-field photonics for trapping, transport and handling of nanomaterials.

COMMUNICATION

1010

High-speed droplet generation on demand driven by pulse laser-induced cavitation

Sung-Yong Park,* Ting-Hsiang Wu, Yue Chen, Michael A. Teitell and Pei-Yu Chiou*

We report on an ultra-fast, pulse laser-driven droplet generation (PLDG) mechanism enabling on-demand droplet generation at rates up to 10 000 droplets per second.

1013

Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device

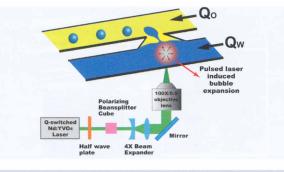
Angela Walter, Anne März, Wilm Schumacher, Petra Rösch and Jürgen Popp*

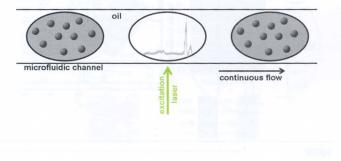
A new approach for bacterial classification implemented in a microfluidic device is presented. A large database (11 200) is established to classify *E. coli* on strain level.

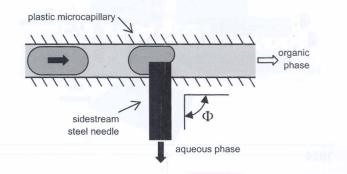
1022

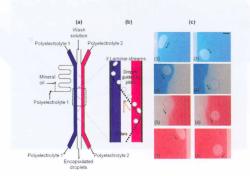
The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream

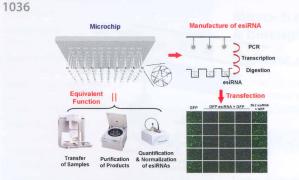
Frederik Scheiff,* Matthias Mendorf, David Agar, Nuno Reis and Malcolm Mackley

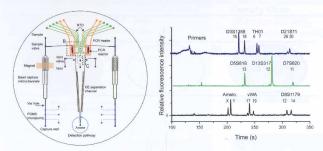

New method and pressure-balance model for separation of organic–aqueous slugs using a plastic microcapillary film and a hydrophilic hypodermic needle.

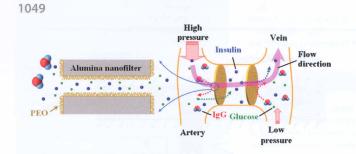

1030


A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules


Chaitanya Kantak, Sebastian Beyer, Levent Yobas, Tushar Bansal and Dieter Trau*


Inspired by the game of "pinball" where rolling metal balls are guided by obstacles, here we describe a novel microfluidic technique which utilizes micropillars in a flow channel to continuously generate, encapsulate and guide Layer-by-Layer (LbL) polyelectrolyte microcapsules.





1041

A polyacrylamide microbead-integrated chip for the largescale manufacture of ready-to-use esiRNA

Huang Huang, Qing Chang, Changhong Sun, Shenyi Yin, Juan Li and Jianzhong Jeff Xi*

The integrated chip enables the convenient transfer, purification, quantification or normalization of hundreds of products in parallel, thus demonstrating a simple and robust method for the large-scale manufacture of esiRNAs.

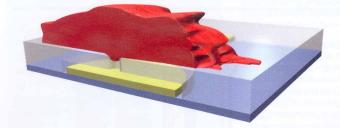
Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification

Peng Liu, Xiujun Li, Susan A. Greenspoon, James R. Scherer and Richard A. Mathies*

A fully integrated microsystem consisting of DNA purification, PCR, post-PCR cleanup, and capillary electrophoresis for performing entire forensic short tandem repeat typing on a single device.

A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter

Sangmin Lee, Min Park, Heon-Seok Park, Yeongae Kim, Siwoo Cho, Jae Hyoung Cho,* Jaesung Park* and Woonbong Hwang*


We first report optimized nanochannel biofilter with superior immunoprotection, antifouling properties and the high permeability of nutrients, which have excellent mechanical stability under *in vivo* condition.

Nanocavity electrode array for recording from electrogenic cells

Boris Hofmann, Enno Kätelhön, Manuel Schottdorf, Andreas Offenhäusser and Bernhard Wolfrum*

We present a new nanocavity sensor array for highly localized recordings from electrogenic cells growing on a chip.

1054

1059

DNA hybridization enhancement using piezoelectric microagitation through a liquid coupling medium

Kiattimant Rodaree, Thitima Maturos, Sastra Chaotheing,* Tawee Pogfay, Nattida Suwanakitti, Chayapat Wongsombat, Kata Jaruwongrungsee, Anurat Wisitsoraat, Sumalee Kamchonwongpaisan, Tanom Lomas and Adisorn Tuantranont*

Piezoelectric microagitation through a liquid coupling medium is employed on DNA microarray chips. This scheme substantially reduces DNA hybridization time and increases efficiency compared to conventional method.

1065

A microfabricated deformability-based flow cytometer with application to malaria

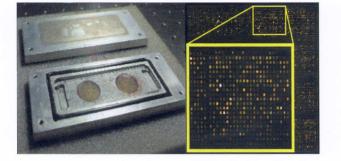
Hansen Bow, Igor V. Pivkin, Monica Diez-Silva, Stephen J. Goldfless, Ming Dao, Jacquin C. Niles, Subra Suresh and Jongyoon Han*

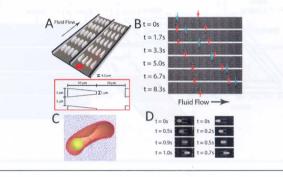
Here we introduce an automated microfabricated "deformability cytometer" that measures dynamic mechanical responses of 10^3 to 10^4 individual RBCs in a cell population.

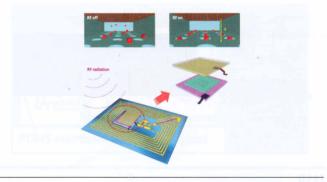
1074

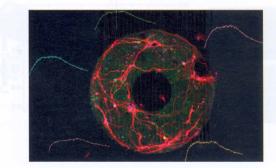
Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits

Wen Qiao,* Gyoujin Cho and Yu-Hwa Lo

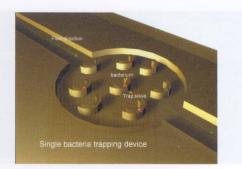

We report the first wirelessly powered microfluidic device integrated with a printed RF circuit, which eliminates the entire need for wire attachments and external instruments.

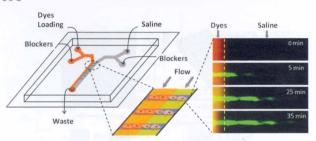

1081

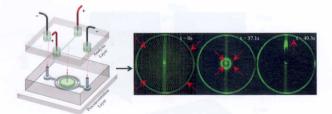

Ring-shaped neuronal networks: a platform to study persistent activity


Ashwin Vishwanathan, Guo-Qiang Bi and Henry C. Zeringue*

We have developed a platform to create small ring-shaped *in vitro* neuronal networks used to consistently generate persistent activity.






1089

1096

1102

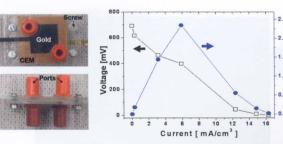
Programmed trapping of individual bacteria using micrometre-size sieves

Min-Cheol Kim, Brett C. Isenberg, Jason Sutin, Amit Meller, Joyce Y. Wong and Catherine M. Klapperich*

We have built and simulated a hydrodynamic sieving device capable of trapping individual bacteria without the use of chemical surface treatments. The trapped cells can be continuously supplied with media and optically monitored while trapped.

Assay for molecular transport across gap junction channels in one-dimensional cell arrays

Nannan Ye, Cédric Bathany and Susan Z. Hua*


A microfluidic chip capable of measuring molecular diffusion *via* gap junction channels in one-dimensional cell arrays.

Radial sample preconcentration

Brent Scarff, Carlos Escobedo and David Sinton*

Radial preconcentration is demonstrated whereby analyte is focused centrally through radial concentration polarization. Sample analytes are focused into the centre, creating a concentrated plug that is injected vertically into the microfluidic analysis layer.

mW/cm

A $\mu\text{L-scale}$ micromachined microbial fuel cell having high power density

Seokheun Choi,* Hyung-Sool Lee, Yongmo Yang, Prathap Parameswaran, César I. Torres, Bruce E. Rittmann and Junseok Chae

We report a MEMS (Micro-Electro-Mechanical Systems)-based microbial fuel cell (MFC) that produces a high power density.

1118

Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP)

Hui-Sung Moon, Kiho Kwon, Seung-Il Kim, Hyunju Han, Joohyuk Sohn, Soohyeon Lee and Hyo-Il Jung*

We developed a microfluidic device for separating CTCs from blood by combining multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP) which enables high-speed continuous flow-through separation without any labeling.

1126

Silicate glass coated microchannels through a phase conversion process for glass-like electrokinetic performance

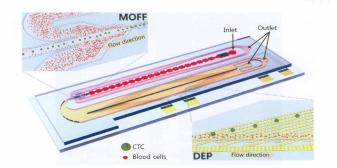
Ming Li and Dong Pyo Kim*

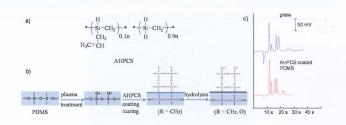
Conversion of a 100 nm thick coating of allylhydridopolycarbosilane (AHPCS) on a PDMS substrate to silicate glass layer by phase conversion is presented. The silicate glass coated PDMS channel presents electrokinetic properties which are comparable to those of native glass channels.

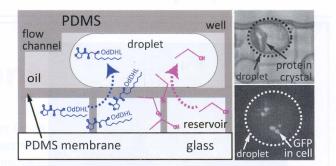
1132

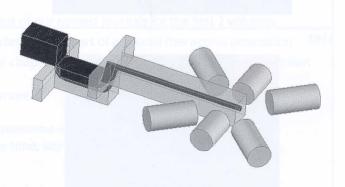
Controlling the contents of microdroplets by exploiting the permeability of PDMS

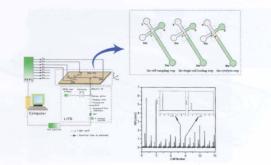
Jung-uk Shim, Santoshkumar N. Patil, James T. Hodgkinson, Steven D. Bowden, David R. Spring, Martin Welch, Wilhelm T.S. Huck,* Florian Hollfelder* and Chris Abell*

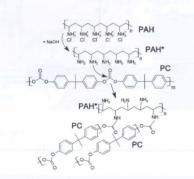

The protein crystallization and gene expression *in vivo* can be controlled by transporting small molecules through PDMS membrane to manipulate the chemical environment of microdroplets.

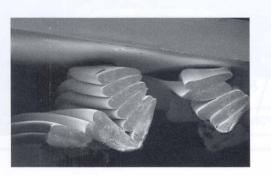

1138


Hydrodynamic optical alignment for microflow cytometry

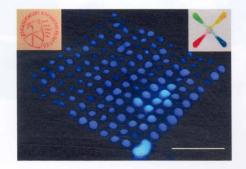

Matthew J. Kennedy, Scott J. Stelick, Lavanya G. Sayam, Andrew Yen, David Erickson and Carl A. Batt*


A device and method are described for aligning a microparticle stream with an illumination zone in a microfabricated flow cytometer.





TECHNICAL NOTES



1157

1161

Electrokinetic gated injection-based microfluidic system for quantitative analysis of hydrogen peroxide in individual HepG2 cells

Xinyuan Zhang, Qingling Li, Zhenzhen Chen, Hongmin Li, Kehua Xu, Lisheng Zhang and Bo Tang*

Single cell injection, cytolysis, electrophoresis separation and determination of H_2O_2 in single cells were automatically performed using the electrokinetic gated injection-based microfluidic system.

Hydrophilic polycarbonate for generation of oil in water emulsions in microfluidic devices

Ladislav Derzsi, Paweł Jankowski, Wojciech Lisowski and Piotr Garstecki*

This report details the method for rendering hydrophilic surfaces of microchannels fabricated in polycarbonate (PC).

UV polymerization of hydrodynamically shaped fibers

Abel L. Thangawng, Peter B. Howell, Jr, Christopher M. Spillmann, Jawad Naciri and Frances S. Ligler*

Flat acrylate fibers were shaped using hydrodynamic focusing and polymerized using UV light. Shapes and sizes could be predetermined using grooves in the microchannel walls and the control of flow-rate ratios of the sheath and prepolymer solutions.

Laser-treated hydrophobic paper: an inexpensive microfluidic platform

Girish Chitnis, Zhenwen Ding, Chun-Li Chang, Cagri A. Savran and Babak Ziaie*

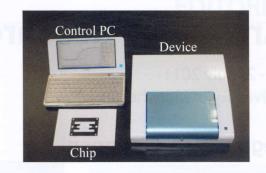
Creating hydrophilic patterns on a hydrophobic paper using laser treatment for applications such as a microfluidic platform or microzone plates for bio-detection assays.

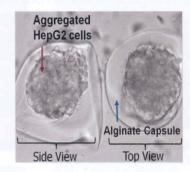
TECHNICAL NOTES

1166

Point-of-care testing system enabling 30 min detection of influenza genes

Tomoteru Abe, Yuji Segawa, Hidetoshi Watanabe, Tasuku Yotoriyama, Shinichi Kai, Akio Yasuda, Norio Shimizu and Naoko Tojo


A nucleic acid amplification test system realizing influenza virus detection at the point-of-care is ready for practical use.


1168

Diffusion-mediated *in situ* alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane

Kwang Ho Lee, Da Yoon No, Su-Hwan Kim, Ji Hee Ryoo, Sau Fung Wong and Sang-Hoon Lee*

The developed encapsulation method is useful for handling and controlling spheroids because transport and preservation of encapsulated spheroids is much easier than for non-encapsulated spheroids.

Looking for free content?

Then register for an RSC Publishing personal account. Giving you access to all free content on the RSC Publishing platform, it includes:

- All content of our newest journals for the first 2 volumes
- Any articles that are part of a special free access promotion
- A sample chapter from each book in the RSC eBook Collection

and much more.

With your username and password you can access the free content any time, any place – all you need is internet access.

So don't delay – register today.

www.rsc.org/personalregistration Registered Charity Number 207890

RSCPublishing